Dysfunction of Wnt signaling and synaptic disassembly in neurodegenerative diseases
نویسندگان
چکیده
The molecular mechanisms that regulate synapse formation have been well documented. However, little is known about the factors that modulate synaptic stability. Synapse loss is an early and invariant feature of neurodegenerative diseases including Alzheimer's (AD) and Parkinson's disease. Notably, in AD the extent of synapse loss correlates with the severity of the disease. Hence, understanding the molecular mechanisms that underlie synaptic maintenance is crucial to reveal potential targets that will allow the development of therapies to protect synapses. Wnts play a central role in the formation and function of neuronal circuits. Moreover, Wnt signaling components are expressed in the adult brain suggesting their role in synaptic maintenance in the adult. Indeed, blockade of Wnts with the Wnt antagonist Dickkopf-1 (Dkk1) causes synapse disassembly in mature hippocampal cells. Dkk1 is elevated in brain biopsies from AD patients and animal models. Consistent with these findings, Amyloid-β (Aβ) oligomers induce the rapid expression of Dkk1. Importantly, Dkk1 neutralizing antibodies protect synapses against Aβ toxicity, indicating that Dkk1 is required for Aβ-mediated synapse loss. In this review, we discuss the role of Wnt signaling in synapse maintenance in the adult brain, particularly in relation to synaptic loss in neurodegenerative diseases.
منابع مشابه
Review Dysfunction of Wnt signaling and synaptic disassembly in neurodegenerative diseases
Dysfunction of Wnt signaling and synaptic disassembly in neurodegenerative diseases Silvia A. Purro, Soledad Galli, and Patricia C. Salinas* 1 Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK * Correspondence to: Patricia C. Salinas, E-mail: p.sali...
متن کاملWnts in action: from synapse formation to synaptic maintenance
A proper balance between synapse assembly and disassembly is crucial for the formation of functional neuronal circuits and synaptic plasticity in the adult brain. During development, synaptogenesis generates a vast excess of synapses, which are subsequently eliminated. Importantly, aberrant synaptic disassembly during development underpins many neurological disorders. Wnt secreted proteins are ...
متن کاملThe Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملReversal of Synapse Degeneration by Restoring Wnt Signaling in the Adult Hippocampus
Synapse degeneration occurs early in neurodegenerative diseases and correlates strongly with cognitive decline in Alzheimer's disease (AD). The molecular mechanisms that trigger synapse vulnerability and those that promote synapse regeneration after substantial synaptic failure remain poorly understood. Increasing evidence suggests a link between a deficiency in Wnt signaling and AD. The secret...
متن کاملRole of Wnt Signaling in the Control of Adult Hippocampal Functioning in Health and Disease: Therapeutic Implications
It is well recognized the role of the Wnt pathway in many developmental processes such as neuronal maturation, migration, neuronal connectivity and synaptic formation. Growing evidence is also demonstrating its function in the mature brain where is associated with modulation of axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. Proteins involved in...
متن کامل